Step of Proof: lt_int_eq_false_elim
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
lt
int
eq
false
elim
:
1.
i
:
2.
j
:
3.
i
<z
j
= ff
(
i
<
j
)
latex
by
InteriorProof
((RW bool_to_propC 3)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n
CollapseTHEN ((Aut
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
P
Q
,
P
&
Q
,
T
,
P
Q
,
False
,
P
Q
,
A
,
True
,
,
t
T
,
A
B
,
x
:
A
.
B
(
x
)
Lemmas
assert
of
le
int
,
bnot
of
lt
int
,
true
wf
,
squash
wf
,
eqff
to
assert
,
iff
transitivity
,
bnot
wf
,
le
wf
,
le
int
wf
,
assert
wf
,
bool
wf
origin